Ubuntu Security Notice USN-5096-1

September 29, 2021 linux-oem-5.13 vulnerabilities

linux-oem-5.13: Linux kernel for OEM systems Details: Valentina Palmiotti discovered that the io_uring subsystem in the Linux
kernel could be coerced to free adjacent memory. A local attacker could use
this to execute arbitrary code. (CVE-2021-41073) Benedict Schlueter discovered that the BPF subsystem in the Linux kernel
did not properly protect against Speculative Store Bypass (SSB) side-
channel attacks in some situations. A local attacker could possibly use
this to expose sensitive information. (CVE-2021-34556) Piotr Krysiuk discovered that the BPF subsystem in the Linux kernel did not
properly protect against Speculative Store Bypass (SSB) side-channel
attacks in some situations. A local attacker could possibly use this to
expose sensitive information. (CVE-2021-35477) Murray McAllister discovered that the joystick device interface in the
Linux kernel did not properly validate data passed via an ioctl(). A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code on systems with a joystick device
registered. (CVE-2021-3612) It was discovered that the tracing subsystem in the Linux kernel did not
properly keep track of per-cpu ring buffer state. A privileged attacker
could use this to cause a denial of service. (CVE-2021-3679) It was discovered that the Option USB High Speed Mobile device driver in
the Linux kernel did not properly handle error conditions. A physically
proximate attacker could use this to cause a denial of service (system
crash) or possibly execute arbitrary code. (CVE-2021-37159) Alois Wohlschlager discovered that the overlay file system in the Linux
kernel did not restrict private clones in some situations. An attacker
could use this to expose sensitive information. (CVE-2021-3732) It was discovered that the Virtio console implementation in the Linux
kernel did not properly validate input lengths in some situations. A local
attacker could possibly use this to cause a denial of service (system
crash). (CVE-2021-38160) It was discovered that the BPF subsystem in the Linux kernel contained an
integer overflow in its hash table implementation. A local attacker could
use this to cause a denial of service (system crash) or possibly execute
arbitrary code. (CVE-2021-38166) Michael Wakabayashi discovered that the NFSv4 client implementation in the
Linux kernel did not properly order connection setup operations. An
attacker controlling a remote NFS server could use this to cause a denial
of service on the client. (CVE-2021-38199) It was discovered that the Sun RPC implementation in the Linux kernel
contained an out-of-bounds access error. A remote attacker could possibly
use this to cause a denial of service (system crash). (CVE-2021-38201) It was discovered that the NFS server implementation in the Linux kernel
contained an out-of-bounds read when the trace even framework is being used
for nfsd. A remote attacker could possibly use this to cause a denial of
service (system crash). (CVE-2021-38202) Naohiro Aota discovered that the btrfs file system in the Linux kernel
contained a race condition in situations that triggered allocations of new
system chunks. A local attacker could possibly use this to cause a denial
of service (deadlock). (CVE-2021-38203) It was discovered that the MAX-3421 host USB device driver in the Linux
kernel did not properly handle device removal events. A physically
proximate attacker could use this to cause a denial of service (system
crash). (CVE-2021-38204) It was discovered that the Xilinx 10/100 Ethernet Lite device driver in the
Linux kernel could report pointer addresses in some situations. An attacker
could use this information to ease the exploitation of another
vulnerability. (CVE-2021-38205) It was discovered that the ext4 file system in the Linux kernel contained a
race condition when writing xattrs to an inode. A local attacker could use
this to cause a denial of service or possibly gain administrative
privileges. (CVE-2021-40490) Update instructions: The problem can be corrected by updating your system to the following
package versions: Ubuntu 20.04 LTS: linux-image-5.13.0-1014-oem 5.13.0-1014.18 linux-image-oem-20.04c 5.13.0.1014.18 After a standard system update you need to reboot your computer to make
all the necessary changes. ATTENTION: Due to an unavoidable ABI change the kernel updates have
been given a new version number, which requires you to recompile and
reinstall all third party kernel modules you might have installed.
Unless you manually uninstalled the standard kernel metapackages
(e.g. linux-generic, linux-generic-lts-RELEASE, linux-virtual,
linux-powerpc), a standard system upgrade will automatically perform
this as well. References: https://ubuntu.com/security/notices/USN-5096-1 CVE-2021-34556, CVE-2021-35477, CVE-2021-3612, CVE-2021-3679, CVE-2021-37159, CVE-2021-3732, CVE-2021-38160, CVE-2021-38166, CVE-2021-38199, CVE-2021-38201, CVE-2021-38202, CVE-2021-38203, CVE-2021-38204, CVE-2021-38205, CVE-2021-40490, CVE-2021-41073 Package Information: https://launchpad.net/ubuntu/+source/linux-oem-5.13/5.13.0-1014.18

Reference:

https://ubuntu.com/security/notices/USN-5095-1

Kirti S

Kirti S